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Abstract—The complexity of artificial intelligence (AI) raises
significant challenges in developing embedded detection systems,
particularly in terms of power consumption. In contrast, biologi-
cal auditory perception addresses these issues efficiently. Drawing
inspiration from biological primitive extraction in the auditory
system, this article presents a new method for drastically reducing
energy required for acoustic signal processing and classification.
This method could also be applied to more general problems.

To assess the efficiency of the proposed algorithm, experiments
were conducted using the Google Speech Command Dataset
(GSCD), focusing on 4 and 8 classes with added noise. Mimicking
the structure of the cochlea, system training starts with 64 analog
primitives, which are pruned sequentially, retaining only the most
relevant ones for classification. This pruning relies on a novel
neural network layer called ”Line Gain.” Results demonstrate
that the proposed algorithm significantly reduces total energy
consumption by 82%, while maintaining comparable accuracy
levels (greater than 90%).

Index Terms—Embedded Artificial intelligence, Primitives
Neural Network, Ultra low power, Speech Detection, Inputs
Learning.

I. INTRODUCTION

Over the past decade, neural networks have played a crucial
role in driving the evolution of artificial intelligence (Al),
particularly in the domain of high-performance detection and
classification. Convolutional neural networks (CNNs) have
emerged as pivotal components, enabling tasks such as image
and sound classification [1]. Inspired by biomimetic analogies
with human vision and brain functions, CNNs have effectively
narrowed the gap between human and Al performance lev-
els. However, a significant disparity in energy consumption
between human and Al systems remains evident. Extensive
research has been conducted to optimize CNN structures,
with studies focusing on reducing operation consumption for
embedded applications through quantization methods [2], [3]
and optimizing hyperparameters for enhanced accuracy [4].

Despite these advances, the gap in energy consumption
between digital and biological architectures raises significant
challenges, especially for embedded systems. This energy
consumption gap is caused by the analog nature of the human
brain’s operations, which consume significantly less energy
compared to digital processing tasks, particularly for middle
to high-frequency processes [5]. Additionally, previous studies
have underscored that feature extraction and high sampling
rate Analog-to-Digital Converters (ADCs) rank among the

most energy-intensive tasks in fully digital embedded machine
learning applications [6]-[9].

Drawing insights from biology, particularly from specialized
organs such as the ears and eyes in our brain, which serve
as dedicated sensors filtering information at low energy cost
[10], presents promising ways for reducing overall energy con-
sumption. Efforts to mimic these organs have been explored,
aiming to address the energy consumption challenges in Al
systems [11], [12]. Furthermore, proposals for optimizing
CNN structures by reducing input selections using genetic
algorithms (GA) or generalized regression neural networks
(GRNN) have been investigated [13], [14]. However, it is
essential to recognize that nature has undergone billions of
years of optimization, making it challenging to determine
which primitives are truly useful in specific cases.

In previous research in sound detection for biodiversity
monitoring [8], [15], always on features extraction using
analog primitives have been investigated. This contribution
goes further by selecting only relevant analog primitives in
order minimize overall power consumption while maintaining
satisfactory accuracy levels.

Although this approach is demonstrated here for sound
classification, it is based on a novel layer named “Line Gain”
that can be used for other types of applications based on
different neural structures.

II. PROPOSED ARCHITECTURE AND ALGORITHM
A. Principles

Operating within the constraints of ultra-low power embed-
ded Al, a mixed analog-numeric architecture like the Primitive
Neural Network (PNN) appears to be the solution to our
problem. For the primitives extraction part of our architecture,
we utilize a system that captures sound spectrograms through
bandpass filters (BP) followed by a low-pass peak detector
(LPPD) in analog form (Fig. 1). This setup closely mimics
the passive functionality of the human cochlea, as indicated in
previous research [10]. Similarly, using Mel-frequency cepstral
coefficients through the numerical Fast Fourier Transform
(FFT) is a conventional method in fully digital voice detection
devices to obtain inputs features for a neural network [12],
[16]. However, performing the FFT requires recording the en-
tire signal at a high frequency (> 16 kHz) and involves numer-
ous operations (n - log,(n)). As explained in the introduction,



analog computing is approximately 10? times more energy-
efficient [S]. This efficiency is why our approach consumes
significantly less energy while yielding similar results. The
analog features are subsequently captured and recorded by an
Analog-to-Digital Converter (ADC) at a low frequency before
being analyzed by a Convolutional Neural Network (CNN).

Acknowledging that significant detections are infrequent, a
forthcoming article will delve into analog criteria for triggering
the ADC and subsequently the CNN. This strategy aims to
minimize their substantial energy consumption, ensuring their
activation only when necessary. Although not elaborated here,
the ADC is currently triggered at 100Hz for 90 samples every
time. Given that all data samples are sounds with durations of
less than 1 second, this sampling rate is sufficient to gather the
required information. Additionally, because the ADC operates
at a low frequency, ultra-low power requirements can be still
maintained.
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This process is becoming increasingly recognized and has
already been employed in recent articles [17], [18] in speech
recognition task.

However, cochlea sensitivity in terms of frequency differs
between species, reflecting their specific detection needs. In
this article, the identification of filter relevance is crucial
for customizing detection, which may not be human, and
for eliminating unnecessary filters. Starting with 64 distinct
frequency bands, CNN is trained on these spectrograms. Then,
systematically eliminating one band at a time, the dense layers
only are retrained while retaining the weights of convolutional
layers at each iteration. At each stage, the model is saved,
and the algorithm halts either when accuracy significantly
decreases or when the number of layers becomes insufficient
for convolution operations. Authors’ objective is to develop a
method that allows pruning frequency band filters according
to their relevance in the optimal way.

B. Implementation

To demonstrate our example, we chose to utilize the Google
Speech Command Dataset (GSCD) [19], focusing on the
classification of four distinct words: ”Yes”, ”No”, ”Left”, and
”Right”. Within this dataset, all recordings are subjected to
noise and spoken by various individuals. Each word class
is represented 2368 times, resulting in a dataset comprising

a total of 9472 one-second-long elements. Furthermore, at
the end of this article, another experiment as been conducted
by adding 4 new words: “five”, ’six”, “seven”, and “eight”,
resulting in a total of 8 classes. For a correct learning, the
dataset has been divided into three parts:
e 10% of the data were reserved for the evaluation of our
final performance. This ensures that our results in Section
IIT are not affected by overfitting.

o The rest of the data was subdivided into two parts for our
training. The validation split has been set at 20%.

The starting architecture of our CNN (Table I) and its
corresponding hyperparameters (Table II) are outlined below.
The ”Line Gain” is a specific layer that will be explained in the
next section. The convolutional kernel size is 3 x 3 in "valid”
mode. The memory value for each layer is estimated in bytes,
considering float-type variables, and represents the memory
footprint during inference. This estimate includes the number
of variables in the layer as well as the residual values required
for the subsequent layer. FLOPs (Floating Point Operations)
indicate the computational load for each inference, with each
multiplication and addition counted as one operation.

TABLE I: CNN Architecture

Layer Output Shape | Activation Memory FLOPs
Input (-, 64, 90, 1) - 23 040 0
Line Gain (-, 64, 90, 1) ReLU 23 296 5 760

Conv2D

(kernel 3x3) (-, 62, 88, 8) ReLU 174 912 436 480
Conv2D

(kernel 3x3) (-, 60, 86, 8) ReLU 167 456 3 302 400
Conv2D

(kernel 3x3) (-, 58, 84, 8) ReLU 158 240 3 118 080
Flatten (-, 38976) - 0 0
Dense (-, 128) ReLU 19 956 736 4 989 056

Dropout (0.2) (-, 128) - 512 0
Dense (-, 32) ReLU 16 640 4128
Dense (-, 4) Softmax 544 132

Total 20.5 MB 11 856 036

TABLE II: CNN Training Hyperparameters

Epoch 15
Validation Split 0.2
Batch Size 32
Optimizer Adam
Loss CategoricalCrossentropy
Learning Rate 0.001

Alternative structures exist in the state of the art. Recurrent
Neural Networks (RNNs) are sometimes used instead of, or
in conjunction with, CNNs, but they generally incur higher
operational costs [20]. Although this is not developed in this
article, keep in mind that RCNNs could be a variant structure
for performance enhancement and are compatible with our
main idea. The same applies to all quantization methods that
work on reducing operation costs; while not covered in this
article, they could further reduce the energy consumption of
the CNN.

During the process, we start by segmenting our data into
64 frequency bands distributed along the Mel scale, spanning



from 100 to 8000Hz, like in human cochlea. Each band
undergoes processing with a peak detector set at cutting
frequencies of 20Hz. Our ADC records 90 samples per second
at 100Hz, generating images sized 64 x 90 pixels for analysis
by our CNN (Fig. 2 B).
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(a) The original audio sound

(b) Spectrogram of the sound divided into 64 frequency bands

(c) Spectrogram with the 48 initial bands suppressed.

Fig. 2: Example of spectrogram collected analogically and
processed by the CNN depending on the number of inputs

After each training session on specified frequency bands,
referred to as a “generation” in this article, the deletion of
the less significant input is performed. Subsequently, a new
CNN is constructed with the reduced input size, and it is
trained again for 15 epochs. The convolutional weights are
inherited from the previous generation, while the dense layers
are initialized randomly. This methodology is grounded in
empirical findings. It has been observed that retraining the old
dense weights (for the first dense layer, the part corresponding
to the deleted band in its weight matrix is suppressed) tends
to trap the model in local minima, significantly compromising

accuracy across generations. Conversely, retraining the con-
volutional layer is unnecessary as the spectrogram remains
relatively consistent between generations. This aligns with
biological phenomena, where convolutional layers act akin to
type I spiral ganglion neurons (SGN I), passively aggregating
signals from the cochlea before forwarding them to the brain
without significant analysis [10]. These neurons exhibit limited
flexibility. In contrast, dense layers resemble brain neurons,
which are subject to cerebral plasticity.

The pseudo code of our algorithm is described below
(Algorithm 1).

Algorithm 1 Cnn inputs pruning

ReqUire: CNNgtryctures Lvaluess Yvaluess epOChS
Create the cnn
Separate the dataset into two parts (Zirain, Teval)
Train the cnn on Xy
Evaluate the accuracy on ey
while not termination condition do
Save the cnn weights
* Get the less significant input
Delete the associated information in Xy, and Zeyal
Recreate the cnn with the changed input size
Fill the cnn with the previous weights
Train the cnn on Xy,
Evaluate the accuracy on Zeyy
end while

C. Line Gain : a novel neural layer

The process of determining the sequence for eliminating
filters ((*) 7th line in algorithm 1) is a critical aspect and
challenge discussed in this article. Initially, one approach
considered prioritizing the deletion of filters based on the
mean gain of data within their frequency band. However, this
method encountered a significant issue: certain crucial aspects
of the sounds, despite having less phonetic emphasis, should
not be overlooked in favor of noise components, which might
dominate in specific frequency bands. This naive method could
lead to prioritizing noise over informative content.

Another approach for selecting the input is to choose it
statically, as proposed by some articles, using various forms
of genetic algorithm. However, in the majority of cases, this
method presents significant time issues and may not converge
correctly. Consequently, in this article, backpropagation is
utilized, and a new type of layer named ’Line Gain’ is
introduced. This layer learns from the inputs and prioritizes
their deletion accordingly.

This layer is incorporated into the CNN structure after the
input layer. Its function is to amplify certain lines of the
spectrogram with the objective of converging weights to an
amplification of 0. At the end of the training, a smaller am-
plification indicates a lesser importance of the corresponding
line, thereby increasing the priority for deletion. The different
weights will be sorted, providing the correct order of the
primitives to delete. To induce certain weights of the model to



converge to zero, an L1 norm is included in the loss function
of this layer (Equation (1)).

New Loss = Original Loss + A Z |w;] . (D)
i=1

Here, )\ represents the regularization parameter, and w;
denotes the weights of the layer. The L1 regularizer term
>, lw;| encourages sparsity in the weights by penalizing
large values, effectively promoting some weights to converge
towards O during training. This regularization technique helps
prevent overfitting and encourages simpler models. For this
to be effective, setting a small regularization strength is
recommended (A is set at 0.01 in this article).

III. RESULTS

Initially, around 89% accuracy is achieved by our model
(88% for 8-class detection) with nearly 5 million parameters,
stabilizing after 15 epochs. The original structure and com-
parison in energy consumption with other devices are more
thoroughly described in our previous work [21].

Following each deletion, our model has been retrained for
an additional 15 epochs, as detailed in Section II-B. Figure
3 depict in red and green the accuracy evolution with the
reduction in the number of inputs from 64 to 7 (further
reduction is unfeasible due to convolutions as shown in table
I). Each deletion results in pruning 86,016 parameters. This
accuracy is computed on a subdataset unseen during CNN
training. Table III summarized the effect of filter deletion
on energy consumption gain of the CNN and its equivalent
accuracy. Note that due to the CNN structure, the number
of operations (and thus the energy consumption) follows a
linear relationship with the number of inputs, resulting in a
proportional energy gain. This analysis has been performed
for both 4- and 8-class classifications.
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Fig. 3: Effect of filter deletion on CNN mean accuracy for 4-
and 8-classes

TABLE III: Effect of Filter Deletion on CNN Consumption

Filters Accuracy Memory | MFLOPs | Energy Gain
64 0.89 | 0.88 | 20.5 MB 11.86 0.0%
56 090 | 0.88 | 17.6 MB 10.24 13.7%
48 0.89 | 0.77 | 14.8 MB 8.62 27.3%
40 0.90 | 0.88 | 12.0 MB 7.00 41.0%
32 092 | 0.88 | 9.2 MB 5.39 54.5%
24 090 | 0.89 | 6.4 MB 3.78 68.1%
16 092 | 0.86 | 3.5 MB 2.16 81.7%
10 0.85 | 0.80 1.4 MB 0.95 92.0%
7 0.80 | 0.76 | 0.38 MB 0.34 97.1%

The words used in this classification are ’yes’, 'no’, ’left’,
and ’right’ for the 4-class classification. For the 8-class
classification, the classes ’five’, ’six’, ’seven’, and ’eight’ are
added.

During the initial generations, a stabilized improvement has
been observed in accuracy but with a significant decrease
in consumption. In our 4-class example, after eliminating 48
filter bands, which correspond to 3/4 of our initial inputs, and
achieving an energy gain of 81.7%, a decline in performance
has been observed. Specifically, only 8% of accuracy has been
lost while halving the consumption. The compromise between
accuracy and consumption will depend on your constraints,
but in any case, the final consumption will drastically decrease
compared to the initial setup.

Compared with other state-of-the-art results for embedded
speech recognition on microcontrollers [1], [16]-[18], [20],
[22], our approach maintains accuracy within the range of
89-94% while improving energy consumption. Additionally,
our method is more versatile and can be applied to a broader
range of subjects. This demonstrates that sometimes, irrelevant
information can penalize our classification, and that highly
optimized CNNs with intelligently selected information can
outperform larger CNNs. A second experimentation confirmed
these results with adding a fixed constant noise to virtuals new
frequency bands. These new informations were not the first
to be eliminated by our system. This consistent behavior led
us to hypothesize that certain frequency bands are perceived
as random by our system, resulting in a greater penalty for
detection than constant information that essentially provides
no features.

IV. CONCLUSION

In this article, the constraints regarding the energy efficiency
of fully digital embedded machine learning applications are
delineated. Taking cues from the energy efficiency of analog
processing and the discerning feature extraction observed in
biological systems such as the cochlea, a Primitive Neural
Network (PNN) architecture has been implemented to achieve
ultra-low-power embedded artificial intelligence for sound
classification. Additionally, we present a general method to
diminish the number of inputs and variables in a Convolutional
Neural Network (CNN) while upholding satisfactory accuracy.
A new neural layer, “Line Gain,” is introduced, designed



to prioritize the removal of frequency bands based on their
significance, guided by backpropagation.

To assess the efficacy of our algorithm, the Google Speech
Command Dataset (GSCD) is utilized. The results demon-
strate the algorithm’s effectiveness in substantially reducing
total power consumption while maintaining accuracy. It is
anticipated that this algorithm will not only enhance sound
detection capabilities but also contribute to reducing the en-
ergy consumption of various other deep learning algorithms,
potentially leading to the development of more efficient and
accurate embedded machine learning systems across diverse
applications.
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